Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Chinese Journal of Radiation Oncology ; (6): 319-324, 2023.
Article in Chinese | WPRIM | ID: wpr-993194

ABSTRACT

Objective:To develop a multi-scale fusion and attention mechanism based image automatic segmentation method of organs at risk (OAR) from head and neck carcinoma radiotherapy.Methods:We proposed a new OAR segmentation method for medical images of heads and necks based on the U-Net convolution neural network. Spatial and channel squeeze excitation (csSE) attention block were combined with the U-Net, aiming to enhance the feature expression ability. We also proposed a multi-scale block in the U-Net encoding stage to supplement characteristic information. Dice similarity coefficient (DSC) and 95% Hausdorff distance (HD) were used as evaluation criteria for deep learning performance.Results:The segmentation of 22 OAR in the head and neck was performed according to the medical image computing computer assisted intervention (MICCAI) StructSeg2019 dataset. The proposed method improved the average segmentation accuracy by 3%-6% compared with existing methods. The average DSC in the segmentation of 22 OAR in the head and neck was 78.90% and the average 95%HD was 6.23 mm.Conclusion:Automatic segmentation of OAR from the head and neck CT using multi-scale fusion and attention mechanism achieves high segmentation accuracy, which is promising for enhancing the accuracy and efficiency of radiotherapy in clinical practice.

2.
Frontiers of Medicine ; (4): 68-74, 2023.
Article in English | WPRIM | ID: wpr-971628

ABSTRACT

Most information used to evaluate diabetic statuses is collected at a special time-point, such as taking fasting plasma glucose test and providing a limited view of individual's health and disease risk. As a new parameter for continuously evaluating personal clinical statuses, the newly developed technique "continuous glucose monitoring" (CGM) can characterize glucose dynamics. By calculating the complexity of glucose time series index (CGI) with refined composite multi-scale entropy analysis of the CGM data, the study showed for the first time that the complexity of glucose time series in subjects decreased gradually from normal glucose tolerance to impaired glucose regulation and then to type 2 diabetes (P for trend < 0.01). Furthermore, CGI was significantly associated with various parameters such as insulin sensitivity/secretion (all P < 0.01), and multiple linear stepwise regression showed that the disposition index, which reflects β-cell function after adjusting for insulin sensitivity, was the only independent factor correlated with CGI (P < 0.01). Our findings indicate that the CGI derived from the CGM data may serve as a novel marker to evaluate glucose homeostasis.


Subject(s)
Humans , Glucose , Blood Glucose , Insulin Resistance/physiology , Diabetes Mellitus, Type 2/diagnosis , Blood Glucose Self-Monitoring , Time Factors , Insulin
3.
Journal of Biomedical Engineering ; (6): 27-34, 2023.
Article in Chinese | WPRIM | ID: wpr-970670

ABSTRACT

In clinical, manually scoring by technician is the major method for sleep arousal detection. This method is time-consuming and subjective. This study aimed to achieve an end-to-end sleep-arousal events detection by constructing a convolutional neural network based on multi-scale convolutional layers and self-attention mechanism, and using 1 min single-channel electroencephalogram (EEG) signals as its input. Compared with the performance of the baseline model, the results of the proposed method showed that the mean area under the precision-recall curve and area under the receiver operating characteristic were both improved by 7%. Furthermore, we also compared the effects of single modality and multi-modality on the performance of the proposed model. The results revealed the power of single-channel EEG signals in automatic sleep arousal detection. However, the simple combination of multi-modality signals may be counterproductive to the improvement of model performance. Finally, we also explored the scalability of the proposed model and transferred the model into the automated sleep staging task in the same dataset. The average accuracy of 73% also suggested the power of the proposed method in task transferring. This study provides a potential solution for the development of portable sleep monitoring and paves a way for the automatic sleep data analysis using the transfer learning method.


Subject(s)
Sleep , Sleep Stages , Arousal , Data Analysis , Electroencephalography
4.
Chinese Journal of Medical Instrumentation ; (6): 402-405, 2023.
Article in Chinese | WPRIM | ID: wpr-982253

ABSTRACT

OBJECTIVE@#In order to improve the accuracy of the current pulmonary nodule location detection method based on CT images, reduce the problem of missed detection or false detection, and effectively assist imaging doctors in the diagnosis of pulmonary nodules.@*METHODS@#Propose a novel method for detecting the location of pulmonary nodules based on multiscale convolution. First, image preprocessing methods are used to eliminate the noise and artifacts in lung CT images. Second, multiple adjacent single-frame CT images are selected to be concatenate into multi-frame images, and the feature extraction is carried out through the artificial neural network model U-Net improved by multi-scale convolution to enhanced feature extraction capability for pulmonary nodules of different sizes and shapes, so as to improve the accuracy of feature extraction of pulmonary nodules. Finally, using point detection to improve the loss function of U-Net training process, the accuracy of pulmonary nodule location detection is improved.@*RESULTS@#The accuracy of detecting pulmonary nodules equal or larger than 3 mm and smaller than 3 mm are 98.02% and 96.94% respectively.@*CONCLUSIONS@#This method can effectively improve the detection accuracy of pulmonary nodules on CT image sequence, and can better meet the diagnostic needs of pulmonary nodules.


Subject(s)
Humans , Lung Neoplasms/diagnostic imaging , Solitary Pulmonary Nodule/diagnostic imaging , Tomography, X-Ray Computed , Neural Networks, Computer
5.
Journal of Biomedical Engineering ; (6): 536-543, 2023.
Article in Chinese | WPRIM | ID: wpr-981573

ABSTRACT

Photoplethysmography (PPG) is often affected by interference, which could lead to incorrect judgment of physiological information. Therefore, performing a quality assessment before extracting physiological information is crucial. This paper proposed a new PPG signal quality assessment by fusing multi-class features with multi-scale series information to address the problems of traditional machine learning methods with low accuracy and deep learning methods requiring a large number of samples for training. The multi-class features were extracted to reduce the dependence on the number of samples, and the multi-scale series information was extracted by a multi-scale convolutional neural network and bidirectional long short-term memory to improve the accuracy. The proposed method obtained the highest accuracy of 94.21%. It showed the best performance in all sensitivity, specificity, precision, and F1-score metrics, compared with 6 quality assessment methods on 14 700 samples from 7 experiments. This paper provides a new method for quality assessment in small samples of PPG signals and quality information mining, which is expected to be used for accurate extraction and monitoring of clinical and daily PPG physiological information.


Subject(s)
Photoplethysmography , Machine Learning , Neural Networks, Computer
6.
Journal of Biomedical Engineering ; (6): 492-498, 2023.
Article in Chinese | WPRIM | ID: wpr-981567

ABSTRACT

Non-rigid registration plays an important role in medical image analysis. U-Net has been proven to be a hot research topic in medical image analysis and is widely used in medical image registration. However, existing registration models based on U-Net and its variants lack sufficient learning ability when dealing with complex deformations, and do not fully utilize multi-scale contextual information, resulting insufficient registration accuracy. To address this issue, a non-rigid registration algorithm for X-ray images based on deformable convolution and multi-scale feature focusing module was proposed. First, it used residual deformable convolution to replace the standard convolution of the original U-Net to enhance the expression ability of registration network for image geometric deformations. Then, stride convolution was used to replace the pooling operation of the downsampling operation to alleviate feature loss caused by continuous pooling. In addition, a multi-scale feature focusing module was introduced to the bridging layer in the encoding and decoding structure to improve the network model's ability of integrating global contextual information. Theoretical analysis and experimental results both showed that the proposed registration algorithm could focus on multi-scale contextual information, handle medical images with complex deformations, and improve the registration accuracy. It is suitable for non-rigid registration of chest X-ray images.


Subject(s)
Algorithms , Learning , Thorax
7.
Journal of Biomedical Engineering ; (6): 433-440, 2022.
Article in Chinese | WPRIM | ID: wpr-939610

ABSTRACT

Glioma is a primary brain tumor with high incidence rate. High-grade gliomas (HGG) are those with the highest degree of malignancy and the lowest degree of survival. Surgical resection and postoperative adjuvant chemoradiotherapy are often used in clinical treatment, so accurate segmentation of tumor-related areas is of great significance for the treatment of patients. In order to improve the segmentation accuracy of HGG, this paper proposes a multi-modal glioma semantic segmentation network with multi-scale feature extraction and multi-attention fusion mechanism. The main contributions are, (1) Multi-scale residual structures were used to extract features from multi-modal gliomas magnetic resonance imaging (MRI); (2) Two types of attention modules were used for features aggregating in channel and spatial; (3) In order to improve the segmentation performance of the whole network, the branch classifier was constructed using ensemble learning strategy to adjust and correct the classification results of the backbone classifier. The experimental results showed that the Dice coefficient values of the proposed segmentation method in this article were 0.909 7, 0.877 3 and 0.839 6 for whole tumor, tumor core and enhanced tumor respectively, and the segmentation results had good boundary continuity in the three-dimensional direction. Therefore, the proposed semantic segmentation network has good segmentation performance for high-grade gliomas lesions.


Subject(s)
Humans , Attention , Glioma/diagnostic imaging , Magnetic Resonance Imaging/methods , Semantics
8.
Journal of Biomedical Engineering ; (6): 320-328, 2022.
Article in Chinese | WPRIM | ID: wpr-928228

ABSTRACT

Early screening based on computed tomography (CT) pulmonary nodule detection is an important means to reduce lung cancer mortality, and in recent years three dimensional convolutional neural network (3D CNN) has achieved success and continuous development in the field of lung nodule detection. We proposed a pulmonary nodule detection algorithm by using 3D CNN based on a multi-scale attention mechanism. Aiming at the characteristics of different sizes and shapes of lung nodules, we designed a multi-scale feature extraction module to extract the corresponding features of different scales. Through the attention module, the correlation information between the features was mined from both spatial and channel perspectives to strengthen the features. The extracted features entered into a pyramid-similar fusion mechanism, so that the features would contain both deep semantic information and shallow location information, which is more conducive to target positioning and bounding box regression. On representative LUNA16 datasets, compared with other advanced methods, this method significantly improved the detection sensitivity, which can provide theoretical reference for clinical medicine.


Subject(s)
Humans , Algorithms , Lung Neoplasms/diagnostic imaging , Neural Networks, Computer , Radiographic Image Interpretation, Computer-Assisted/methods , Tomography, X-Ray Computed/methods
9.
Journal of Biomedical Engineering ; (6): 722-731, 2021.
Article in Chinese | WPRIM | ID: wpr-888233

ABSTRACT

The background of abdominal computed tomography (CT) images is complex, and kidney tumors have different shapes, sizes and unclear edges. Consequently, the segmentation methods applying to the whole CT images are often unable to effectively segment the kidney tumors. To solve these problems, this paper proposes a multi-scale network based on cascaded 3D U-Net and DeepLabV3+ for kidney tumor segmentation, which uses atrous convolution feature pyramid to adaptively control receptive field. Through the fusion of high-level and low-level features, the segmented edges of large tumors and the segmentation accuracies of small tumors are effectively improved. A total of 210 CT data published by Kits2019 were used for five-fold cross validation, and 30 CT volume data collected from Suzhou Science and Technology Town Hospital were independently tested by trained segmentation models. The results of five-fold cross validation experiments showed that the Dice coefficient, sensitivity and precision were 0.796 2 ± 0.274 1, 0.824 5 ± 0.276 3, and 0.805 1 ± 0.284 0, respectively. On the external test set, the Dice coefficient, sensitivity and precision were 0.817 2 ± 0.110 0, 0.829 6 ± 0.150 7, and 0.831 8 ± 0.116 8, respectively. The results show a great improvement in the segmentation accuracy compared with other semantic segmentation methods.


Subject(s)
Humans , Kidney Neoplasms/diagnostic imaging , Neural Networks, Computer , Specimen Handling , Tomography, X-Ray Computed
10.
Journal of Biomedical Engineering ; (6): 1163-1172, 2021.
Article in Chinese | WPRIM | ID: wpr-921858

ABSTRACT

Entropy model is widely used in epileptic electroencephalogram (EEG) analysis, but there are few reports on how to objectively select the parameters to compute the entropy model in the analysis of resting-state functional magnetic resonance imaging (rfMRI). Therefore, an optimization algorithm to confirm the parameters in multi-scale entropy (MSE) model was proposed, and the location of epileptogenic hemisphere was taken as an example to test the optimization effect by supervised machine learning. The rfMRI data of 20 temporal lobe epilepsy (TLE) patients with hippocampal sclerosis, positive on structural magnetic resonance imaging, were divided into left and right groups. Then, the parameters in MSE model were optimized by the receiver operating characteristic curves (ROC) and area under ROC curve (AUC) values in sensitivity analysis, and the entropy value of the brain regions with statistically significant difference between the groups were taken as sensitive features to epileptogenic hemisphere lateral. The optimized entropy values of these bio-marker brain areas were considered as feature vectors input into the support vector machine (SVM). Finally, combining optimized MSE model with SVM could accurately distinguish epileptogenic hemisphere in TLE at an average accuracy rate of 95%, which was higher than the current level. The results show that the MSE model parameter optimization algorithm can accurately extract the functional imaging markers sensitive to the epileptogenic hemisphere, and achieve the purpose of objectively selecting the parameters for MSE in rfMRI, which provides the basis for the application of entropy in advanced technology detection.


Subject(s)
Humans , Brain/diagnostic imaging , Brain Mapping , Entropy , Epilepsy, Temporal Lobe/diagnostic imaging , Magnetic Resonance Imaging
11.
Chinese Traditional and Herbal Drugs ; (24): 3609-3616, 2020.
Article in Chinese | WPRIM | ID: wpr-846285

ABSTRACT

The implementation of membrane technology in the manufacturing of Chinese materia medica (CMM) plays a critical role in the strategic plan and demand from the perspective of national science and technology, and it is a new and high technology that needs to be popularized in Chinese medicine pharmaceutical industry. The manufacturing technology of CMM is primarily based on the theory and practices of chemical engineering in which the upgrade of its separation technology mainly relies on the advancement in chemical engineering. Our authors have been exploring and implementing membrane technology in the green manufacturing process of CMM in the past decade. Recently, we were granted funding in the topic of "The Modernization of Traditional Chinese Medicine" from The National Key Research and Development Program of China. In the research proposal, we introduced the emerging concept of "material-chemistry engineering", and suggested the concept of theoretical framework for "the process design and engineering of membrane-based green manufacturing of CMM". The framework included the establishment of analytical testing approach for precise analysis in aqueous CMM environment, a systematic testing and inspection method for the membrane and membrane process to guarantee the safety and effectiveness of the CMM products, as well as the integrated membrane process design and optimization for the CMM manufacturing process. The ultimate goal of the proposal is to achieve high flux and decent separation efficiency for CMM production in multi-scale range, in particular to understand the correlation between the aqueous CMM environment and the structure, property and preparation of the membrane. Furthermore, with the aid of computational modeling in process design and manufacturing, the theoretical foundation of membrane-based CMM green manufacturing can be assured. The innovation in the interdisciplinary of CMM production and material-chemistry engineering will help overcoming the current bottleneck encountered in the CMM manufacturing industry in China, resolving the urgent issues of energy, resources and environment, and providing a feasible solution to sustainable development.

12.
Journal of Biomedical Engineering ; (6): 434-441, 2020.
Article in Chinese | WPRIM | ID: wpr-828149

ABSTRACT

Lung nodules are the main manifestation of early lung cancer. So accurate detection of lung nodules is of great significance for early diagnosis and treatment of lung cancer. However, the rapid and accurate detection of pulmonary nodules is a challenging task due to the complex background, large detection range of pulmonary computed tomography (CT) images and the different sizes and shapes of pulmonary nodules. Therefore, this paper proposes a multi-scale feature fusion algorithm for the automatic detection of pulmonary nodules to achieve accurate detection of pulmonary nodules. Firstly, a three-layer modular lung nodule detection model was designed on the deep convolutional network (VGG16) for large-scale image recognition. The first-tier module of the network is used to extract the features of pulmonary nodules in CT images and roughly estimate the location of pulmonary nodules. Then the second-tier module of the network is used to fuse multi-scale image features to further enhance the details of pulmonary nodules. The third-tier module of the network was fused to analyze the features of the first-tier and the second-tier module of the network, and the candidate box of pulmonary nodules in multi-scale was obtained. Finally, the candidate box of pulmonary nodules under multi-scale was analyzed with the method of non-maximum suppression, and the final location of pulmonary nodules was obtained. The algorithm is validated by the data of pulmonary nodules on LIDC-IDRI common data set. The average detection accuracy is 90.9%.

13.
Journal of Biomedical Engineering ; (6): 541-548, 2020.
Article in Chinese | WPRIM | ID: wpr-828136

ABSTRACT

Changes in the intrinsic characteristics of brain neural activities can reflect the normality of brain functions. Therefore, reliable and effective signal feature analysis methods play an important role in brain dysfunction and relative diseases early stage diagnosis. Recently, studies have shown that neural signals have nonlinear and multi-scale characteristics. Based on this, researchers have developed the multi-scale entropy (MSE) algorithm, which is considered more effective when analyzing multi-scale nonlinear signals, and is generally used in neuroinformatics. The principles and characteristics of MSE and several improved algorithms base on disadvantages of MSE were introduced in the article. Then, the applications of the MSE algorithm in disease diagnosis, brain function analysis and brain-computer interface were introduced. Finally, the challenges of these algorithms in neural signal analysis will face to and the possible further investigation interests were discussed.

14.
Journal of Medical Biomechanics ; (6): E208-E215, 2020.
Article in Chinese | WPRIM | ID: wpr-862314

ABSTRACT

Objective To investigate the conduction behavior of fluid flow induced by physiological loads at different scales of bone. Method sThe multiscale bone models were established by using the COMSOL Multiphysics software, and the fluid behaviors were investigated at macro-, meso- and micro-scale. Results At macro-meso scale,the distribution of pore pressure and fluid velocity of osteon near the periosteum and endoosteum were different from that in other parts. Due to the different structure and material parameters at different layers, the loading and fluid pressure caused different biomechanical responses in the process of transferring from macro-scale to micro-scale. Conclusions The multi-scale layered modeling of bone structure-osteon-lacunae-bone canaliculi was established, which provided the theoretical reference for deeper understanding of fluid stimulation and mechanotransduction.

15.
Journal of Medical Biomechanics ; (6): E166-E172, 2019.
Article in Chinese | WPRIM | ID: wpr-802488

ABSTRACT

Objective To compare the hemodynamic characteristics in internal carotid artery models, which were obtained by multi-scale unidirectional and bidirectional coupling models, so as to provide references for selecting models in further studies. Methods Based on the nuclear magnetic resonance image of one patient with mild stenosis of internal carotid artery, the lumped parameter model of the circle of Willis and the three-dimensional model of internal carotid artery were constructed. Those two different multi-scale models were constructed by unidirectional and bidirectional coupling. Results With the increase of stenosis degree, the inlet and outlet blood pressure and the outlet blood flow of internal carotid artery all decreased under two kinds of coupling method. The distribution of low time average wall shear stress (TAWSS) and high oscillatory shear index (OSI) of the internal carotid artery both increased with the increase of stenosis degree under two kinds of coupling method in general. The anterior cerebral artery segment showed lower shear stress and higher OSI with bidirectional coupling in 70% stenosis, and the blood flow direction of posterior communicating artery was changed, which was significantly different from unidirectional coupling results. Conclusions At a low degree of stenosis, the result of those two kinds of coupling method were consistent in general, but there was a significant difference in 70% stenosis, and the result of bidirectional coupling was closer to physiological parameters. The research findings can be better applied to the hemodynamic study of cerebrovascular diseases.

16.
Chinese Journal of Experimental Ophthalmology ; (12): 624-629, 2019.
Article in Chinese | WPRIM | ID: wpr-753209

ABSTRACT

Objective To propose a multi-scale convolutional neural network ( CNN) based lesions detection method of fundus image,and evaluate its application in diabetic retinopathy ( DR) assisted diagnosis. Methods A multi-scale CNN based on lesions detection method of fundus image was proposed. Compared with the existing detection methods,the problem of poor robustness based on threshold segmentation and morphological segmentation was overcome. The idea of multi-scale grids detection without relying on manual pixel-by-pixel labeling was adopted in this algorithm,and the detection performance of small lesions was significantly improved. In addition, multiple DR lesions with high accuracy could be detected by the proposed loss function under the condition of weak labels and small data sets. Results At the level of lesions,the sensitivity and specificity of hard exudation lesions detection were 92. 17% and 97. 17%,respectively. Compared with single-scale method,the sensitivity and accuracy of multi-scale method proposed in this paper increased by 7. 41% and 5. 02%,respectively,and compared with other algorithm using the same public dataset IDRiD, the specificity of this algorithm increased by 55. 82%. This method could effectively detect the lesions in fundus images,and could give the basic range of the lesions. The average detection time of fundus images with a large number of lesions was 1. 59 seconds. Conclusions The DR lesions in the fundus image can be quickly and reliably identified,the location information of the lesions can be marked,and the influence of subjective factors can be reduced by using this algorithm, and it can be used to assist the clinician to conduct more effectively.

17.
An. acad. bras. ciênc ; 82(1): 61-68, Mar. 2010. ilus, graf, tab
Article in English | LILACS | ID: lil-539315

ABSTRACT

The theory of transport in porous media such as clays depends on the level of description. On the macroscopic scale,hydrodynamics equations are used. These continuous descriptions are convenient to model the fluid motion in a confined system. Nevertheless, they are valid only if the pores of the material are much larger than the molecular size of the components of the system. Another approach consists in using molecular descriptions. These two methods which correspond to different levels of description are complementary. The link between them can be clarified by using a coarse-graining procedure where the microscopic laws are averaged over fast variables to get the long time macroscopic laws. We present such an approach in the case of clays. Firstly, we detail the various levels of description and the relations among them, by emphasizing the validity domain of the hydrodynamic equations. Secondly, we focus on the case of dehydrated clays where hydrodynamics is not relevant. We show that it is possible to derive a simple model for the motion of the cesium ion based on the difference on time scale between the solvent and the solute particles.


A teoria de transporte em meios porosos tais como argilasdepende do nível de descrição. Na escala macroscópica, equações da hidrodinâmica são utilizadas. Tais descrições a níveldo contínuo são convenientes para tratar o movimento do fluido em sistemas confinados. No entanto, tais equações são válidas se os poros do material são muito maiores do que as moléculas das componentes do sistema. Uma outra abordagem consiste em usar descrições moleculares. Esses dois métodos que correspondem a diferentes níveis de descriçãosão complementares. A ligação entre eles pode ser elucidada usando um procedimento de mudança de escala onde são tomadas médias das leis microscópicas sobre as variáveis rápidas para se obter as leis macroscópicas para tempos longos. Apresentamos esta abordagem no caso de argilas. Primeiramente apresentamos em detalhes os vários níveis de descrição bem como as relações entre eles, enfatizando o domínio de validade das equações hidrodinâmicas. Em seguida, focamos no caso de argilas desidratadas onde a hidrodinâmica não é relevante. Mostramos que é possível derivar um modelo simples para o movimento dos íons césio baseado na diferença entre as escalas de tempo do solvente e das partículas do soluto.

18.
An. acad. bras. ciênc ; 82(1): 127-144, Mar. 2010. ilus, graf, tab
Article in English | LILACS | ID: lil-539320

ABSTRACT

In this study, a multiphysical description of fluid transport through osteo-articular porous media is presented. Adapted from the model of Moyne and Murad, which is intended to describe clayey materials behaviour, this multiscale modelling allows for the derivation of the macroscopic response of the tissue from microscopical information. First the model is described. At the pore scale, electrohydrodynamics equations governing the electrolyte movement are coupled with local electrostatics (Gauss-Poisson equation), and ionic transport equations. Using a change of variables and an asymptotic expansion method, the macroscopic description is carried out. Results of this model are used to show the importance of couplings effects on the mechanotransduction of compact bone remodelling.


Neste estudo uma descrição multifísica do transporte de fluidos em meios porosos osteo articulares é apresentada. Adaptado a partir do modelo de Moyne e Murad proposto para descrever o comportamento de materiais argilosos a modelagem multiescala permite a derivação da resposta macroscópica do tecido a partir da informação microscópica. Na primeira parte o modelo é apresentado. Na escala do poro as equações da eletro-hidrodinâmica governantes do movimento dos eletrolitos são acopladas com a eletrostática local (equação de Gauss-Poisson) e as equações de transporte iônico. Usando uma mudança de variáveis e o método de expansão assintótica a derivação macroscópica é conduzida. Resultados do modelo proposto são usados para salientar a importância dos efeitos de acoplamento sobre a transdução mecânica da remodelagem de ossos compactados.


Subject(s)
Body Fluids/metabolism , Bone and Bones/metabolism , Cartilage, Articular/metabolism , Models, Biological , Biological Transport , Biomechanical Phenomena , Porosity , Static Electricity
19.
Rev. bras. estud. popul ; 24(2): 225-246, jul.-dez. 2007. ilus, mapas, tab
Article in Portuguese | LILACS | ID: lil-472080

ABSTRACT

A mobilidade populacional tem sido historicamente um dos mais importantes determinantes próximos do desmatamento e da degradação de recursos naturais em áreas de fronteira. Abordagens analíticas "multiescalares" são particularmente apropriadas para compreender este tipo de relação entre mobilidade populacional, meio ambiente e uso da terra como sendo resultante da operação de fatores em diferentes, porém interconectados, escalas e níveis de análise espaciais e temporais. Entretanto, pouca pesquisa empírica tem sido feita na identificação simultânea de fatores em distintas escalas e níveis que afetam tal relação. Boa parte da literatura privilegia o estudo de dados agregados, dando menor atenção à análise micro (indivíduos e domicílios) e sua evolução no tempo. O foco tem sido o impacto sobre as florestas tropicais, e não necessariamente as condições de vida e a mobilidade das famílias de migrantes que são diretamente responsßveis por grande parte desses impactos. Este artigo discute aspectos teóricos e metodológicos de uma abordagem multiescalar no estudo da relação entre mobilidade populacional, meio ambiente e uso da terra, além de apresentar um exemplo empírico em uma área de colonização agrícola na Amazônia equatoriana.


Historically, demographic mobility has been one of the most important determinants in areas where there has been deforesting and deterioration of natural resources. "Multi-scale" analytic approaches are especially appropriate for dealing with this type of relationship between demographic mobility, environment and the use of the land as the result of the interaction of factors in different but interconnected scales and levels of spatial and temporal analysis. But little research has been done in identifying concurrent factors on these different scales and at different levels that affect this relationship. Much of the literature gives stronger emphasis to the study of aggregated data and less to micro-analysis (individuals and households and their evolution in time). The focus has been the impact on the tropical forests and not necessarily on the living conditions and mobility of the migrant families who are directly responsible for a high proportion of these impacts. This article presents a discussion on theoretical and methodological aspects of a multi-scale approach to the study of the relationships between demographic mobility, environment, and the use of the land. It also presents an empirical example in an area of agricultural colonization in the equatorial Amazon Basin.


La movilidad poblacional ha sido históricamente uno de los más importantes determinantes próximos de la deforestación y la degradación de los recursos naturales en áreas de frontera. Los abordajes analíticos "multiescalares" son particularmente apropiados para comprender este tipo de relación entre movilidad poblacional, medio ambiente y uso de la tierra como resultante de la operación de factores en diferentes, aunque interconectadas, escalas y niveles de análisis espaciales y temporales. Sin embargo, ha sido realizada una escasa investigación empírica en la identificación simultánea de factores a distintas escalas y niveles que afectan tal relación. Buena parte de la literatura privilegia el estudio de datos agregados, prestando menor atención al análisis micro (individuos y domicilios) y su evolución en el tiempo. La focalización fue en el impacto sobre los bosques tropicales, y no necesariamente en las condiciones de vida y la movilidad de las familias migratorias que son directamente responsables de gran parte de esos impactos. Este artículo discute aspectos teóricos y metodológicos de un abordaje multiescalar en el estudio de la relación entre movilidad poblacional, medio ambiente y uso de la tierra, además de presentar un ejemplo empírico en un área de colonización agrícola en la Amazonia ecuatoriana.


Subject(s)
Border Areas , Conservation of Natural Resources , Environment , Latin America
20.
Space Medicine & Medical Engineering ; (6)2006.
Article in Chinese | WPRIM | ID: wpr-580562

ABSTRACT

Objective To study and design a new algorithm of QT interval measurement based on multi-scale morphological derivative transform(MMDT) according to the demands of mobile monitoring platform.Methods After the MMDT of ECG signals by inducing a triangle and a short line as a pair of structure elements,they were classified into four types by their morphological characteristics and the optimal strategy for each type was described to detect the onset of Q-wave.By introducing the "wing" function,two referenced points of T peak were picked out,which was helpful to locate the peak and offset of T wave,and improve the precision and recognition rate of MMDT method when detecting the bifid T wave(90.9%)and biphasic T wave(86.7%).Results Eighty data records from CSE database were used to evaluate the availability.By contrast with the wavelet transform method,the statistical results showed that the proposed algorithm had generally less error and smaller standard deviation especially for abnormal-phase T wave.Conclusion Compared with those algorithms based on wavelet transform and self-adaptive threshold techniques,our algorithm needs less empirical parameters and calculation.It is also suitable for mobile monitoring and HOLTER system,and has a wide prospect of application.

SELECTION OF CITATIONS
SEARCH DETAIL